
Solid-Shell Labeling for Discrete Surfaces
SIQI WANG, New York University, USA
JANOS MENY, Roblox, USA
IZAK GRGURIC, Roblox, Canada
MEHDI RAHIMZADEH, Roblox, USA
DENIS ZORIN, New York University, USA
DANIELE PANOZZO, New York University, USA
HSUEH-TI DEREK LIU, Roblox, Canada

solid

shell

shell

solid

Input InputVolumetric MeshOurs Volumetric MeshOurs

Fig. 1. Given an input shape, our method labels each triangle as either the boundary of a solid (purple) or the medial surface of a shell (yellow), driven by
sparse user guidance. These facet labels can be passed to off-the-shelf tetrahedral (for solid faces) and offset (for shell faces) meshers to produce volumetric
meshes (orange) that are ready for downstream applications. We obtain the ship model from kenny.nl licensed under CC0, and the helicopter model ©Roblox.

Artist-created meshes in-the-wild often do not have a well defined interior.

We observe that they typically consist of a mix of solid elements, faces

that bound a volume, and shell elements that represent the medial surface

of a thin shell. The lack of a well-defined interior prevents downstream

applications, such as solid-modeling, simulation, and manufacturing. We

present a method that takes as input a surface mesh and assigns to each face

a label determining whether it belongs to a solid or shell. These labels reduce

ambiguity by defining the interior for solid faces through thresholding the

generalized winding number field, and for shell faces as the volume within

an offset. We cast the labeling problem as an optimization that outputs a

solid/shell label for each face, guided by a sparse set of user inputs. Once

labeling is complete, we show how the shape can be volume meshed by

passing the shell faces through an offset mesher and the solid faces to an off-

the-shelf tetrahedral mesher, producing a final volumetric mesh by taking

their union. Experiments on diverse meshes with defects and multiple solid

and shell components demonstrate that our approach delivers the desired

Authors’ addresses: SiqiWang, sw4429@nyu.edu, New York University, New York, USA;

Janos Meny, jmeny@roblox.com, Roblox, San Mateo, USA; Izak Grguric, igrguric@

roblox.com, Roblox, Vancouver, Canada; Mehdi Rahimzadeh, mrahimzadeh@roblox.

com, Roblox, San Mateo, USA; Denis Zorin, dzorin@cs.nyu.edu, New York University,

New York, USA; Daniele Panozzo, panozzo@nyu.edu, New York University, New York,

USA; Hsueh-Ti Derek Liu, hsuehtil@gmail.com, Roblox, Vancouver, Canada.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-2137-3/2025/12

https://doi.org/10.1145/3757377.3763847

labels, enabling modeling and simulation on wild meshes in a way that

respects the user intent.

CCS Concepts: • Computing methodologies→Mesh geometry models.

Additional Key Words and Phrases: shape modeling, volumetric models

ACM Reference Format:
Siqi Wang, Janos Meny, Izak Grguric, Mehdi Rahimzadeh, Denis Zorin,

Daniele Panozzo, and Hsueh-Ti Derek Liu. 2025. Solid-Shell Labeling for

Discrete Surfaces. In SIGGRAPH Asia 2025 Conference Papers (SA Conference
Papers ’25), December 15–18, 2025, Hong Kong, Hong Kong. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3757377.3763847

1 INTRODUCTION
Generating volumetric meshes

from a given shape is a funda-

mental subroutine within geo-

metric computation and model-

ing. Accordingly, extensive re-

search has addressed key sub-

problems, such as tetrahedraliz-

ing a bounded volume and deter-

mining inside/outside relative to a triangle mesh. Decades of re-

search have yielded robust methods that reliably mesh volumetric

domains.

Despite these advancements, existing volumetric meshing algo-

rithms can sometimes produce unexpected results (see the inset),

especially for artist-created assets in online repositories. These fail-

ures stem from the assumption that the input triangle mesh “approx-

imately” describes the boundary of a well-defined solid volume. In

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://kenney.nl/assets/
https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.1145/3757377.3763847
https://doi.org/10.1145/3757377.3763847

2 • Siqi Wang, Janos Meny, Izak Grguric, Mehdi Rahimzadeh, Denis Zorin, Daniele Panozzo, and Hsueh-Ti Derek Liu

Fig. 2. Given a triangle mesh (left), whether a shape is a shell or solid
may require understanding the semantics, such as an eggshell (middle) or
a marble (right). Our method incorporates user guidance and is able to
produce user-desired face labels (yellow shell and purple solid) from the
same input geometry.

Fig. 3. Existing heuristics, such as using triangle visibility [Zheng et al.
2024], to classify solid/shell faces are prone to artifacts, such as deleting
interior components. ©Roblox

practice, however, this assumption does not always hold. Whether

a shape is a volumetric thin shell or a solid depends on the seman-

tics (see Fig. 2), instead of purely relying on geometric information.

Moreover, many shapes in the wild consist of a mixture of solid and

shell components (see Fig. 1), posing further challenges to meshing.

This ambiguity between shell and solid structures results in some

heuristic strategies in practice, such as assuming everything is solid

(or shell) or attempting to infer solids/shells based on visibility. How-

ever, these heuristics frequently prove inadequate (see Fig. 3), lead-

ing to meticulous, time-consuming manual intervention to correct

inaccuracies at the individual polygon level. Obtaining user-desired

face labels is critical to volumetrically meshing the object: tetra-

hedral meshing for solid faces and offset meshing for shell faces.

Incorrect labeling can cause artifacts in the resulting volume mesh

such as distorted appearance (Fig. 12), deletion of invisible structures

(Fig. 3), and unexpected physical behavior (Fig. 10).

In lieu of this, we present a method for classifying each face of a

triangle mesh as belonging to either a solid or a shell component,

requiring only sparse user guidance. We formulate this labeling

problem as an energy optimization, wherein the label of each face

serves as the optimization variable, and the user-provided guidance

is incorporated into the energy functional. After minimization, we

take the resulting face labels to construct a volumetric mesh. Faces

labeled as “solid” are processed through tetrahedral meshing tools

to obtain a volumetric mesh. Faces that are identified as “shell” are

passed through offset surfacing techniques, yielding a volumetric

thin shell (see Fig. 4). After these two streams of volumetric meshing,

we union the results and obtain a single mesh which is amenable to

Fig. 4. Given an input mesh (left), our method optimizes the label for each
face to be either a solid (purple) or a shell (yellow) given sparse user guidance
(purple/yellow dots). After the optimization, shell faces are passed through
an offset mesher (top), solid faces are passed through a tetrahedral mesher
(bottom). Then these two volumetric meshes are unioned to produce the
final volumetric mesh (orange).

downstream applications, such as the Constructive Solid Geometry

(CSG) modeling or physically-based simulation.

2 RELATED WORK
Our method classifies each face in a mesh as either solid or shell

to support volumetric meshing. We provide a brief overview of

volumetric meshing and related topics that require determining the

interior of an object.

2.1 Volumetric Meshing and Offset Construction
One can compute a volumetric mesh from a surface mesh with

either volumetric (e.g., tetrahedral meshing) or offsetting meshing

algorithms, which operate under opposing implicit assumptions.

Solid-oriented volume meshers (e.g., [Alliez et al. 2024; Diazzi and

Attene 2021; Diazzi et al. 2023; Hu et al. 2020, 2018; Si 2015]) assume

the input triangle mesh is an approximation of a closed solid and pro-

duce a volume mesh whose boundary faces approximate the input.

This “closed-solid” assumption leads these methods to automati-

cally close gaps and remove interior details, but this behavior can

conflict with artistic intent (see Fig. 13). In contrast, shell-oriented

meshers, such as [Cao et al. 2023, 2024; Zint et al. 2024], treat each

triangle of a mesh as a thin shell element. These methods construct

a volumetric mesh by offsetting the surface in both directions and

tetrahedralizing the thin volume enclosed within the resulting shell.

While offset surfacing methods preserve the visual appearance and

maintain all interior components, they tend to produce unrealistic

physical behaviors for objects that should behave as solid bodies.

Due to conflicting assumptions between solid- and shell-oriented

meshers, existing techniques are only applicable to homogeneous
inputs where all faces in the mesh are consistently either solid or

shell. In practice, however, artist-created meshes frequently contain

mixed elements that violate these assumptions (see Fig. 1), causing

both approaches to produce undesirable results. To address this

limitation, our method automatically generates per-face labels that

reconcile these two perspectives. Faces classified as solid are pro-

cessed by a solid-oriented tetrahedralizer, while faces labeled as

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

Solid-Shell Labeling for Discrete Surfaces • 3

shell are handled by an offsetter that generates a thin volumetric

mesh with appropriate physical thickness.

2.2 Solid/Shell Heuristics in Mesh Repairing
Mesh repairing aims at converting defective triangle soups into

watertight manifolds by, for instance, filling gaps [Ju 2004; Liepa

2003] and removing self-intersections [Attene 2014; Campen and

Kobbelt 2010; Guo and Fu 2024; Zhou et al. 2016]. Comprehensive

surveys are provided by Attene et al. [2013] and Ju [2009]. The

question of whether a triangle belongs to a shell or solid often

comes up as a subproblem in a repairing pipeline. For instance,

wrapping-based methods [Chen et al. 2023; Portaneri et al. 2022]

often impose the assumption that all faces should be labeled as solid,

similar to tetrahedral meshing techniques, but similarly suffer from

the problem of removing internal structures. The method by Huang

et al. [2020] indirectly determines face labels by checking whether

each element connects to infinity through a voxelized representation

of the shape. The closest method to ours is the method proposed by

Zheng et al. [2024]. Their pipeline uses ray casting to estimate the

visibility of each face and converts this visibility information into an

openness score. Faces judged open are offset, all geometry is inserted

into a BSP tree, and a global graph cut is used to extract a watertight

surface. Because the test hinges on visibility, shell structures hidden

behind other geometry can be misclassified (see Fig. 3 and Fig. 13).

Our approach differs in two key ways. First, we rely on the

visibility-independent generalized winding number (GWN), elimi-

nating occlusion-related errors. Second, solid–shell segmentation

can depend on semantics or be genuinely ambiguous, so a fully

automatic method may choose an unintended interpretation with

no easy recourse for the user. We let users add “inside” hints, treat-

ing them as soft constraints when optimizing the face labels and

providing an intuitive mechanism for correcting ambiguous regions.

2.3 Winding Numbers for Inside/Outside Reasoning
The generalized winding number (GWN) introduced by Jacobson

et al. [2013] determines whether a point lies inside or outside an

arbitrary triangle soup. Most applications assume the entire mesh

encloses a uniform solid region, using the GWN for isosurface ex-

traction via marching cubes [Lorensen and Cline 1987] or dual

contouring [Ju et al. 2002], or as the basis for “fuzzy” CSG opera-

tions [Barill et al. 2018]. We discard this uniform-solid assumption:

our method removes faces not intended to enclose volume, yielding

a cleaner set of solid faces whose induced GWN field is better suited

to downstream contouring, CSG, and simulation. Fast-evaluation

schemes for the GWN, such as that of Barill et al. [2018], can be

incorporated into our method for improved speed.

The winding number has also been employed in applications

outside of meshing, such as coloring vector sketches [Scrivener et al.

2024], reconstruction [Chen et al. 2024] and has inspired work like

computing generalized signed distances [Feng et al. 2023]. Another

line of work [Lin et al. 2024; Metzer et al. 2021; Xu et al. 2023] has

used the GWN to orient point clouds. Our method is similar in spirit,

but has a different use case. We optimize a scalar variable attached to

each face of a triangle mesh, determining how that face contributes

to the GWN field. This optimization process results in a set of solid

solid

shell

WN
1

-1

0

Fig. 5. Generalized winding number field of a collection of segments before
(left) and after (right) the optimization. Segments are colored by the ten-
dency of being classified as solid or shell.

faces for which the GWN field more closely approximates that of an

ideal closed solid object, so downstream volumetric meshing with

homogeneous solid assumptions is more well-behaved.

3 METHOD
The input to our method is a triangle mesh M = (V, F), comprising

a set of vertex positions V and a set of faces F. Our method imposes

no constraints on the input topology and is capable of handling

non-manifold elements or even a soup of triangles. We do, however,

assume that each face has the orientation intended by the artist. The

output of our method is a set of (soft) labels ℓ = {ℓ𝑓 } where each
label ℓ𝑓 ∈ [0, 1] indicates whether the face 𝑓 is a shell (0) or a solid
(1) component. These soft labels can then be thresholded to achieve

the final binary labels.

We cast the labeling problem as an energy optimization, where

the labels ℓ are the optimization variables, and the energy can op-

tionally incorporate user-controllable terms. Without user guidance,

our method can serve as an automatic tool to provide solid/shell

labels. But, in general, the label for a face can be ambiguous and can

depend on the semantics of the object (see Fig. 2). We thus provide

additional user-controllable terms to manipulate the outcome of the

optimization.

3.1 Energy
We obtain face labels by solving an unconstrained optimization

problem

ℓ = argmin

ℓ
𝐸𝑏 (ℓ) + 𝛼𝐸𝑢 (ℓ) + 𝛽𝐸𝑠 (ℓ), (1)

where 𝛼, 𝛽 ∈ R+
are positive scalars to control the balance between

these terms. 𝐸𝑏 encourages the resulting face labels to induce well-

separated interior/exterior regions, 𝐸𝑢 incorporates user controls

into the optimization, and 𝐸𝑠 encourages smoothness across the

labels ℓ within the same surface patch.

Binary Winding Number Term.
We observe that artist-created

shapes often do not contain too

many “irrelevant” components,

meaning that most triangles in a

mesh are created for a purpose.

With this observation in mind, we design an energy which, by de-

fault, preserves nested interior structures (e.g., furniture inside a

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

4 • Siqi Wang, Janos Meny, Izak Grguric, Mehdi Rahimzadeh, Denis Zorin, Daniele Panozzo, and Hsueh-Ti Derek Liu

house, see Fig. 5). We draw inspiration from the globally injective

parameterization [Du et al. 2021] which detects nested structures

using the winding number. Specifically, the winding number field of

a set of closed, non-self-intersecting curves will be piecewise con-

stant 0/1 if the curves neither overlap nor have inverted orientations.

This motivates our design of a binary winding number energy 𝐸𝑏
which encourages the winding number field induced by the labeling

to be either 0 or 1

𝐸𝑏 (ℓ) =
1

|P |
∑︁
p∈P

(
𝑤 (p, ℓ) (1 −𝑤 (p, ℓ)

)
2

(2)

with

𝑤 (p, ℓ) = 1

4𝜋

∑︁
𝑓

Ω𝑓 (p)ℓ𝑓 , (3)

where P denotes the set of sampled points we use to evaluate the

energy, |P | denotes the number of samples, Ω𝑓 is the solid angle of

triangle 𝑓 with respect to point p, and ℓ𝑓 is the face label for face 𝑓

bounded between 0 ≤ ℓ𝑓 ≤ 1. Intuitively, one can think of𝑤 (p) as
a weighted generalized winding number [Jacobson et al. 2013] with

options to ignore shell faces (ℓ𝑓 = 0). The binary winding number

energy 𝐸𝑏 has two global minima when𝑤 (p) = 0 or 1, promoting a

binary winding number field as the result of minimization.

User-Control Term. However, this energy formulation is moti-

vated by the idealized scenario in [Du et al. 2021] designed to pro-

mote global injectivity. When applied to 3D triangle soups that may

contain various defects and non-manifold elements, minimizing

𝐸𝑏 alone does not always produce the results users expect. More-

over, geometric cues by themselves (i.e., 𝐸𝑏 alone) are insufficient to

achieve the desired solid/shell classifications (see Fig. 2). To incorpo-

rate user preference in the labeling process, we introduce another

energy term which allows users to specify the target winding num-

ber 𝑡q ∈ {0, 1} for a sparse set of spatial locations q ∈ C, indicating
whether the point q should lie in the interior or exterior of the model.

Specifically, we define the user control energy 𝐸𝑢 as

𝐸𝑢 (ℓ) =
1

|C|
∑︁
q∈C

∥𝑤 (q, ℓ) − 𝑡q∥𝛾 , (4)

where |C| denotes the number of user-specified points and 𝛾 is a

positive even integer, controlling how sensitive this term is to small

deviations from the target winding number 𝑡q. The higher the power,
the more tolerant this term becomes to small errors. Empirically,

we set the default 𝛾 = 4 which gives us the easiest way to control

the output labels (see Sec. 4.3).

Smoothness Term. As the control of 𝐸𝑢 is local, using only 𝐸𝑢 often

requires more computation time to propagate label adjustments

or specifying more constrained locations C. We therefore add a

smoothness energy 𝐸𝑠 on face labels ℓ to encourage connected

pieces to share the same label.

𝐸𝑠 (ℓ) =
1

𝐴

∑︁
𝑖, 𝑗∈N𝐹

𝑎𝑖 𝑗 ∥ℓ𝑖 − ℓ𝑗 ∥2, (5)

where we useN𝐹 to indicate neighboring faces which share an edge

in-between, 𝑎𝑖 𝑗 denote the barycentric edge area, and 𝐴 =
∑
𝑖 𝑗 𝑎𝑖 𝑗

is the sum of the areas. The combination and three terms forms our

energy (see Eq. 1). We set 𝛼 = 10
3, 𝛽 = 10 as the default parameter

throughout the experiments.

3.2 Implementation
We implement ourmethod in Python, utilize PyTorch library [Paszke

et al. 2017] for auto-differentiation, and optimize our energy with

the Adam optimizer [Kingma and Ba 2015]. We evaluate the binary

winding number loss 𝐸𝑏 on points P sampled near the surface.

Specifically, we uniformly sample points (by default 64
3
) that have

distance less than 𝜖 away from the mesh, where 𝜖 is set to be 10%

of the longest edge of the mesh bounding box.

As the winding number computation

Ω𝑓 (p) for p ∈ P are constant through-

out the optimization, we cache the result

of {Ω𝑓 (p)} as a single matrix to acceler-

ate the optimization, leading to about 10

milliseconds runtime per optimization step

on a mesh with ~10,000 faces, using GPU

acceleration on an Apple M4 Pro chip. The

models presented in this paper typically take 500 to 5000 iterations

until convergence, with convergence determined by the gradient

norm. We report the runtime for a “Spot” mesh (see the inset) at

different resolutions in Table 1.

Table 1. Summary of runtime for initialization, per-iteration and total con-
vergence duration on a mesh at different resolutions.

#Faces Initialization Time Per-iteration Time Convergence Time

5K 1.7 s 8.3 ms 14.7 s

10K 3.0 s 12.7 ms 21.8 s

20K 8.5 s 32.7 ms 48.2 s

40K 32.7 s 91.6 ms 122.1 s

We notice that some meshes have big triangles slicing through

multiple solid/shell regions (like a ground plane of a house scene).

This issue prevents users from getting desired volumetric meshes be-

cause neither assigning solid nor shell to the problematic face yields

a user-desired result. We thus apply a mesh arrangement [Campen

and Kobbelt 2010; Guo and Fu 2024] algorithm as a preprocessing

step to partition intersecting triangles into smaller fragments before

running our algorithm.

We visualize the result of our method with Polyscope [Sharp et al.

2019]. We allow users to add constraint points in Eq. 4 by clicking

points in our preliminary interface and then specify whether this

point belongs to an interior region or not. Due to the efficiency of

our method, one can interactively see the result updated during

optimization (please see the supplementary video for a demo usage

of our implementation).

After obtaining the face labels ℓ , for the solid part, we extracted

a closed surface mesh from the tetrahedral mesh computed with

TetWild [Hu et al. 2018]. For the shell part, we extrude shells with

a user-specified thickness 𝜏 using a robust topological offset algo-

rithm [Zint et al. 2024], where 𝜏 is by default 1% of the longest

edge of the mesh bounding box. Next, we take the union of the

two closed surfaces with a robust mesh boolean code [Cherchi et al.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

Solid-Shell Labeling for Discrete Surfaces • 5

input model our labels our volumetric mesh

cell fractureCSG operations

Fig. 6. The face labels optimized by our method can assist volumetric mesh-
ing (green). This mesh is ready for boolean operations (e.g., intersection,
union, subtraction) with the method by [Cherchi et al. 2022], and volumetric
simulation such as the fractures. See the video at 02:20. ©Roblox

solid

shell

Fig. 7. Left: A single constraint guides the optimization to classify a cor-
rupted bunny (10 percent of faces removed) as fully solid. Right: A pipe
modeled as a union of cylinders is classified as pure shell after placing some
constraints. ©Roblox

2022]. Finally, we use TetWild [Hu et al. 2018] to obtain our output

tetrahedral mesh, that is ready for solid modeling and simulation ap-

plications as shown in Sec. 4. Moreover, one could apply the method

by Attene et al. [2009] to extract a closed manifold triangle mesh

from our output to support surface computations.

4 RESULTS
Our method outputs a set of face labels indicating solid and shell

faces. We show that these labels can benefit off-the-shelf algorithms

for constructing volumetric meshes, with unambiguous definitions

of inside and outside based on users’ specifications. With such

user-defined interior/exterior definitions, one can ensure that the

simulation behavior aligns with the semantic properties of an object

(see Fig. 10) and can perform boolean operations without the need

of relying on extra tools for “guessing” where the interior region is

located (see Fig. 6).

Our method enables user control through point-based constraints

that specify whether locations should be inside or outside the object.

This approach can obtain a wide variety of user-desired segmenta-

tions by placing constraints appropriately. When all specified points

are constrained to be outside, our energy function has a unique

global minimum that labels every face as shell (provided there is at

solid

shell

Fig. 8. Incrementally adding point constraints can alter whether faces are
labeled as solid or shell. Purple spheres denote interior constraints—points
designated to lie within the solid—whereas yellow spheres denote exterior
constraints—points designated to lie outside it. By default, we convert the
soft labels into binary labels by applying a threshold of 0.5. ©Roblox

solid

shell

Fig. 9. Our method allows one to control face labeling results by setting
different configurations of the guidance point (colored spheres). We convert
the soft labels into binary labels by applying a threshold of 0.8. ©Roblox

least one outside constraint). For instance, in Fig. 7, our optimiza-

tion produces an all-shell result for a watertight mesh representing

pipes. When a constraint specifies that a point lies inside the object,

the optimization encourage face labels to be solid when doing so

helps achieve a winding number of 1 at that point. Fig. 7 shows a

watertight mesh with a randomly deleted subset of faces, where a

single inside constraint produces an all-solid segmentation. While

classification is straightforward when meshes contain only solid

or shell faces, in the wild meshes often combine faces that bound

solids with others that represent thin shell surfaces. Our method

provides flexibility to achieve diverse segmentations on wild meshes.

Fig. 8 shows how adding constraints incrementally modifies face

labeling until the desired result is achieved (bracket and light source

as solid, light bulb as shell). These interactions allows one to place

different constraint configurations to achieve different solid/shell

segmentations (Fig. 9). Fig. 10 demonstrates the importance of user

interaction in the labeling process. Given a closed manifold repre-

senting a coke can—which most heuristics would classify as solid

(e.g., [Zheng et al. 2024])—our method allows users to specify a thin

shell result, producing simulation behavior that better matches the

expected physical properties of an actual coke can.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

6 • Siqi Wang, Janos Meny, Izak Grguric, Mehdi Rahimzadeh, Denis Zorin, Daniele Panozzo, and Hsueh-Ti Derek Liu

input model

our labels

[Zheng et al. 2024]

solid

shell

solid

shell

simulation

simulation

volumetric mesh

volumetric mesh

v

v

Fig. 10. We present solid/shell labels (second column) and the correspond-
ing volumetric mesh (third column) produced by our method (top) with
two user-added constraints and the (all-solid) labeling from [Zheng et al.
2024] (bottom). The last column shows a non-inverting, neo-Hookean elas-
ticity simulation with contact [Li et al. 2020] imposed on the two volumet-
ric meshes, where we fix the bottom 5% and move the top 5% of the can
downwards to compress the can. Making the can filled with solid yields
unexpected simulation behavior (bottom right), contrasting our method
which successfully produce the compression bending behavior (top right).
See the video at 03:40. We obtain the model from [Chern et al. 2018].

4.1 Comparison to Explicit Labeling
To evaluate our method, we build a preliminary interface that en-

ables users to provide hints by specifying whether selected points

should be classified as inside or outside the object. Table 2 quantifies
the user effort required to obtain manually-created target labels for

a set of seven benchmark meshes (see Fig. 11) and compares our

method against two baselines. The first baseline represents individ-

ual face labeling, where each face is selected separately. The second

baseline approximates practical selection mechanisms such as face

component selection or flood filling by counting the number of face

components that contain at least one shell/solid face. For the second

baseline, we pre-process the mesh by merging duplicate vertices to

reduce the number of face components, because the meshes have

too many face components to make selection mechanisms that rely

on mesh connectivity practical. Note that this number represents a

lower bound since connected face components do not necessarily

correspond to actual shell/solid regions. These comparisons consis-

tently show that our tools requires orders of magnitude less effort,

in terms of the number of constraints needed, to achieve manually

created target labels.

We further note that our labeling paradigm depends only on

whether a point lies inside or outside the object and is independent

of the object’s discretization, requiring only that the discretization

supports the definition of a GWN field. Users therefore need to

understand only the inside or outside concept, not details about the

Cartoon Car
Display
Cloche

Grandfather
Clock

Helicopter

Pirate Ship

Piano

Tank

Fig. 11. Seven models benchmark for measuring the labeling effort. Face
color represents the target labels: solid faces are colored purple, shell faces
are colored yellow. The purple and yellow spheres in the scene represent
the interior and exterior constraints in Eq. 4 one needs to obtain the target
labels, respectively. ©Roblox

Table 2. Summary of labeling effort for each benchmark mesh in Fig. 11.
For each model, we first obtain target face labels through manual face
selection by a user. We report: (i) the number of constraints added to our
optimization to achieve the target segmentation, (ii) the number of faces
labeled as shell/solid, and (iii) the number of face components containing
at least one shell/solid label. This table demonstrates that using our tool
requires less effort compared to manual selection, by comparing the number
of constraints needed to achieve target labels.

Model #Constraints #Faces #Components

Cartoon Car 3 480/2764 15/14

Display Cloche 1 1610/496 32/6

Grandfather Clock 4 1245/2331 15/36

Helicopter 4 5110/8347 63/98

Pirate Ship 8 883/4086 29/52

Piano 12 669/2355 61/122

Tank 7 4105/4903 326/217

geometry representation. By contrast, both baseline methods re-

quire awareness of the triangle mesh, and the component-selection

approach is especially fragile: it often requires an additional prepro-

cessing step to merge vertices before it is practical.

4.2 Comparison to Prior Arts
Labeling all the faces as solid or shell does not always create a phys-

ically meaningful volumetric mesh. In Fig. 12 (left), we demonstrate

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

Solid-Shell Labeling for Discrete Surfaces • 7

input

ours[Hu et al. 2020] [Zheng et al. 2024]

solid

shell

Fig. 12. Given a tree model with a mixture of solid (e.g., trunk) and shell (e.g.,
leaves) elements (top left), using a visibility-driven classification by [Zheng
et al. 2024] is prone to label invisible leaves as solid elements (top middle),
yielding unwanted volumes after tetrahedralization (bottom middle). In
contrast, our method is able to label trunk faces to be solid, and leaf triangles
to be shell (top right), yielding a user-desired volumetric mesh (bottom right).
We also include the reconstruction from [Hu et al. 2020] if one assign every
face to be solid. ©Roblox

input

all shell ours[Zheng et al. 2024]

Fig. 13. We show the volumetric mesh (bottom) created by our solid/shell
face labels (no user constraint is needed in this case), which successfully
labels the lid as shell and the cheese as solid (right), in contrast to all-
shell labeling (left) and the visibility-driven labeling by [Zheng et al. 2024]
(middle).

a naive uniform solid labeling of the tree leads to artifacts when

reconstructing a volumetric mesh based on the method by [Hu

et al. 2020]. Labeling based on heuristics, such as visibility [Zheng

et al. 2024], tends to label closed object as solid, which is prone to

unexpected physical behavior or deleting invisible structures. In

Fig. 10, solid/shell labeling method based on visibility [Zheng et al.

2024] tends to label the can as all-solid, while with easy user-added

constraints, our method gives the capability to label the body as

shell and the zip as solid. These two different labels lead to different

β = 0 β = 10

β = 1000β = 100

solid

shell

Fig. 14. Comparison on different 𝛽 values in 𝐸𝑠 on a helicopter model
without user control 𝐸𝑢 . Each optimization is allotted a maximum of 2
minutes; runs that do not converge within this time are terminated. ©Roblox

physical behavior when performing a compression simulation. For

models with self-occlusion, the visibility-based labeling tends to

remove important, but invisible, structures (e.g. Fig. 13) or assigning

solid labels to invisible shell structures (see Fig. 12). In contrast, our

method addresses the above issues by using a non-visibility-based

winding number field as a prior, augmented with user guidance, to

allow control over different inside/outside labelings (e.g., in Fig. 9)

to be aligned with user’s intent.

4.3 Ablations
Choice of 𝛼 and 𝛽 . The larger 𝛼 is, the more optimization will

prioritize the user constraints 𝐸𝑢 . The larger 𝛽 is, the smoother ℓ
will be on the connected components. However, 𝛽 cannot be too

large, otherwise the total energy will be dominated by 𝐸𝑠 rather

than 𝐸𝑏 . Consequently, the optimization exhibits slow convergence

while still maintaining a relatively high 𝐸𝑏 value. Fig. 14 compares

the labeling results with different choice of 𝛽 on a helicopter model.

In our paper, we set 𝛼 = 10
3, 𝛽 = 10 for all the experiments.

Choice of 𝛾 . We perform an ablation study on how 𝛾 in Eq. 4

influences the convergence behavior of labels ℓ in optimization.

In Fig. 15, we demonstrate that for a given mesh with the same

user-specified constraint, 𝛾 = 4 leads to an immediate convergence

on ℓ towards either 0 or 1, while 𝛾 = 2 fails to converge during

the optimization with non-decreasing gradient. As even higher

exponent can lead to numerical instability, we choose 𝛾 = 4 in

Eq. 4 for better optimization behavior and more effective solid/shell

label classification.

Influence of each energy term 𝐸𝑏 , 𝐸𝑠 and 𝐸𝑢 . The necessity of 𝐸𝑏
is to encourage a binary winding number field, so if we keep 𝐸𝑏
alone, the optimization will still give us a labeling that induces a

binary field, which is similar to the situation when the input mesh

is a triangle soup, and 𝐸𝑠 is zero (𝛽 = 0 in Fig. 14). In that case, the

resulting labels may not match the artist intent. Incorporating user

controls with 𝐸𝑏 and 𝐸𝑠 in the energy will take artist intent into

consideration – connected faces are more likely to share similar

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

8 • Siqi Wang, Janos Meny, Izak Grguric, Mehdi Rahimzadeh, Denis Zorin, Daniele Panozzo, and Hsueh-Ti Derek Liu

solid

shell

Fig. 15. Comparison on the difference of convergence behavior between
𝛾 = 2 (left) and 𝛾 = 4 (right) in Eq. 4. ©Roblox

all shell all solid randomized ours

solid

shell

Fig. 16. Comparison on different initialization on labels ℓ . From left to
right, initializing all the labels as shell (ℓ = 0), as solid (ℓ = 1), randomized
initialization and as the midpoint between solid and shell (ℓ = 0.5). We
obtain the model from polyhaven.com by Josh Dean licensed under CC0.

labels. Finally, 𝐸𝑢 is more specific for user-desired semantics. For

instance, the top middle of Fig. 8 shows the result without 𝐸𝑢 , and

as the user controls are added increasingly, the labels can be more

specialized to the user intent.

Initialization on labels ℓ . Initializing all the labels as shell (ℓ = 0)

will force ℓ to stay at zero, as the GWN field is already binary and ℓ
is also smooth. The effect of initializing all the labels as solid (ℓ = 1)

relies on the initial GWN field: if the field is already binary, ℓ will
stay at 1, otherwise it will continue to be optimized until a binary

field appears. Random initialization almost always provides a non-

binary initial GWN field, thus, ℓ will go wherever the optimization

converges. Therefore, all solid and random initialization are both

reasonable alternatives, but may converge to different results with-

out user control, and often take longer time to converge. Fig. 16

shows different labeling results with different ℓ initializations on a

light bulb model. In our paper, the soft labels ℓ are initialized as 0.5

(in the middle between solid and shell).

5 LIMITATIONS & FUTURE WORK
Our approach lays the groundwork towards an accessible tool that

could help turning “in-the-wild” 3D assets into simulation-, solid-

modeling-, or 3D-print-ready form. Our strategy requires far less

manual efforts (often less than 10 user provided points C) to divide

meshes into solid and shell components, in comparison to explicit

face selection, which typically requires selecting thousands of faces

and familiarity with 3D modeling details such as triangulations,

connectivity, selection, and flood-filling. Future work could involve

developing a comprehensive and intuitive user interface that en-

ables users to place spheres to designate interior/exterior regions,

along with common utilities like mesh selection, undo, and slicing.

Collecting a wide range of examples from such an interface could

motivate future data-driven methods to learn how to automatically

place those guiding spheres. Removing the assumption of requiring

the input faces to be correctly oriented, possibly by incorporating

normal orientation tools [Metzer et al. 2021] or extending the face

label searching field to ℓ𝑓 ∈ [−1, 1], could extend the reach of our

method to more types of mesh defects. Allowing face orientations

to change during optimization could achieve a broader range of

user intents, such as turning a sphere inside out to create a vol-

umetric mesh that extends towards infinity but is hollow inside.

Building on top of the generalization of winding number to other

representations [Barill et al. 2018], extending our methods to differ-

ent representations (e.g., point clouds) could further impact other

fields, such as robotics and 3D sensing/reconstruction.

ACKNOWLEDGMENTS
We would like to extend our thanks to the Alpha Strike team of

Roblox for the use of their models in our examples. We would like

to thank members of the Geometric Computing Lab at New York

University; Michael Tao for method discussion; Daniel Zint for

instructions in running the topological offsets code. This work was

also partially supported by the NSF grant OAC-2411349.

REFERENCES
Pierre Alliez, Clément Jamin, Laurent Rineau, Stéphane Tayeb, Jane Tournois, and

Mariette Yvinec. 2024. 3D Mesh Generation. In CGAL User and Reference Manual
(6.0.1 ed.). CGAL Editorial Board. https://doc.cgal.org/6.0.1/Manual/packages.html#

PkgMesh3

Marco Attene. 2014. Direct repair of self-intersecting meshes. Graph. Model. 76, 6
(2014), 658–668.

Marco Attene, Marcel Campen, and Leif Kobbelt. 2013. Polygon mesh repairing: An

application perspective. ACM Computing Surveys (CSUR) 45, 2 (2013), 1–33.
Marco Attene, Daniela Giorgi, Massimo Ferri, and Bianca Falcidieno. 2009. On convert-

ing sets of tetrahedra to combinatorial and PL manifolds. Computer Aided Geometric
Design 26, 8 (2009), 850–864.

Gavin Barill, Neil G Dickson, Ryan Schmidt, David IW Levin, and Alec Jacobson. 2018.

Fast winding numbers for soups and clouds. ACM Transactions on Graphics (TOG)
37, 4 (2018), 1–12.

Marcel Campen and Leif Kobbelt. 2010. Exact and Robust (Self-)Intersections for

Polygonal Meshes. Comput. Graph. Forum 29, 2 (2010), 397–406.

Hongyi Cao, Gang Xu, Renshu Gu, Jinlan Xu, Xiaoyu Zhang, and Timon Rabczuk.

2023. A Parallel Feature-preserving Mesh Variable Offsetting Method with Dynamic

Programming. CoRR abs/2310.08997 (2023). https://doi.org/10.48550/ARXIV.2310.

08997 arXiv:2310.08997

Hongyi Cao, Gang Xu, Renshu Gu, Jinlan Xu, Xiaoyu Zhang, Timon Rabczuk, Yuzhe

Luo, and Xifeng Gao. 2024. Robust and Feature-Preserving Offset Meshing. CoRR
abs/2412.15564 (2024). https://doi.org/10.48550/ARXIV.2412.15564 arXiv:2412.15564

Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas. 2024. 3D Reconstruction with Fast

Dipole Sums. ACM Trans. Graph. 43, 6 (2024), 192:1–192:19. https://doi.org/10.1145/

3687914

Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, and Xifeng Gao. 2023. Robust Low-

Poly Meshing for General 3D Models. ACM Trans. Graph. 42, 4 (2023), 119:1–119:20.
Gianmarco Cherchi, Fabio Pellacini, Marco Attene, and Marco Livesu. 2022. Interactive

and Robust Mesh Booleans. ACM Trans. Graph. 41, 6 (2022), 248:1–248:14.
Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from

metric. ACM Trans. Graph. 37, 4 (2018), 63.
Lorenzo Diazzi and Marco Attene. 2021. Convex polyhedral meshing for robust solid

modeling. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–16.
Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene. 2023. Constrained

Delaunay Tetrahedrization: A Robust and Practical Approach. ACM Transactions on
Graphics (TOG) 42, 6 (2023), 1–15.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://polyhaven.com/
https://creativecommons.org/publicdomain/zero/1.0/
https://doc.cgal.org/6.0.1/Manual/packages.html#PkgMesh3
https://doc.cgal.org/6.0.1/Manual/packages.html#PkgMesh3
https://doi.org/10.48550/ARXIV.2310.08997
https://doi.org/10.48550/ARXIV.2310.08997
https://arxiv.org/abs/2310.08997
https://doi.org/10.48550/ARXIV.2412.15564
https://arxiv.org/abs/2412.15564
https://doi.org/10.1145/3687914
https://doi.org/10.1145/3687914

Solid-Shell Labeling for Discrete Surfaces • 9

Xingyi Du, Danny M. Kaufman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Noam

Aigerman, and Tao Ju. 2021. Optimizing global injectivity for constrained parame-

terization. ACM Trans. Graph. 40, 6 (2021), 260:1–260:18.
Nicole Feng, Mark Gillespie, and Keenan Crane. 2023. Winding Numbers on Discrete

Surfaces. ACMTrans. Graph. 42, 4 (2023), 36:1–36:17. https://doi.org/10.1145/3592401
Jia-Peng Guo and Xiao-Ming Fu. 2024. Exact and Efficient Intersection Resolution for

Mesh Arrangements. ACM Trans. Graph. 43, 6 (2024), 165:1–165:14.
Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast

tetrahedral meshing in the wild. (2020).

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.

2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60.
Jingwei Huang, Yichao Zhou, and Leonidas J. Guibas. 2020. ManifoldPlus: A Robust

and Scalable Watertight Manifold Surface Generation Method for Triangle Soups.

CoRR abs/2005.11621 (2020). arXiv:2005.11621 https://arxiv.org/abs/2005.11621

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside

segmentation using generalized winding numbers. ACM Transactions on Graphics
(TOG) 32, 4 (2013), 1–12.

Tao Ju. 2004. Robust repair of polygonal models. ACM Trans. Graph. 23, 3 (2004),

888–895.

Tao Ju. 2009. Fixing Geometric Errors on Polygonal Models: A Survey. J. Comput. Sci.
Technol. 24, 1 (2009), 19–29.

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of hermite

data. ACM Trans. Graph. 21, 3 (July 2002), 339–346. https://doi.org/10.1145/566654.

566586

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann

LeCun (Eds.).

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy R Langlois, Denis Zorin,

Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental po-

tential contact: intersection-and inversion-free, large-deformation dynamics. ACM
Trans. Graph. 39, 4 (2020), 49.

Peter Liepa. 2003. Filling Holes in Meshes. In Eurographics Symposium on Geometry Pro-
cessing, Leif Kobbelt, Peter Schroeder, and Hugues Hoppe (Eds.). The Eurographics

Association. https://doi.org//10.2312/SGP/SGP03/200-206

Siyou Lin, Zuoqiang Shi, and Yebin Liu. 2024. Fast and Globally Consistent Normal

Orientation based on the Winding Number Normal Consistency. ACM Trans. Graph.
43, 6, Article 189 (Nov. 2024), 19 pages. https://doi.org/10.1145/3687895

William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution

3D surface construction algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987),
163–169. https://doi.org/10.1145/37402.37422

Gal Metzer, Rana Hanocka, Denis Zorin, Raja Giryes, Daniele Panozzo, and Daniel

Cohen-Or. 2021. Orienting point clouds with dipole propagation. ACM Trans. Graph.
40, 4 (2021), 165:1–165:14. https://doi.org/10.1145/3450626.3459835

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-

matic differentiation in pytorch. (2017).

Cédric Portaneri, Mael Rouxel-Labbé, Michael Hemmer, David Cohen-Steiner, and

Pierre Alliez. 2022. Alpha wrapping with an offset. ACM Trans. Graph. 41, 4 (2022),
127:1–127:22.

Daniel Scrivener, Ellis Coldren, and Edward Chien. 2024. Winding Number Features

for Vector Sketch Colorization. Comput. Graph. Forum 43, 5 (2024), i–x. https:

//doi.org/10.1111/CGF.15141

Nicholas Sharp et al. 2019. Polyscope. www.polyscope.run.

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. 41, 2 (2015), 11:1–11:36.

Rui Xu, Zhiyang Dou, Ningna Wang, Shiqing Xin, Shuangmin Chen, Mingyan Jiang,

Xiaohu Guo, Wenping Wang, and Changhe Tu. 2023. Globally Consistent Normal

Orientation for Point Clouds by Regularizing the Winding-Number Field. ACM
Trans. Graph. 42, 4, Article 111 (July 2023), 15 pages. https://doi.org/10.1145/3592129

Zhongtian Zheng, Xifeng Gao, Zherong Pan, Wei Li, Peng-Shuai Wang, Guoping Wang,

and KuiWu. 2024. Visual-PreservingMesh Repair. IEEE Transactions on Visualization
& Computer Graphics 30, 09 (2024), 6586–6597.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh ar-

rangements for solid geometry. ACM Trans. Graph. 35, 4 (2016), 39:1–39:15.

https://doi.org/10.1145/2897824.2925901

Daniel Zint, Zhouyuan Chen, Yifei Zhu, Denis Zorin, Teseo Schneider, and Daniele

Panozzo. 2024. Topological Offsets. arXiv preprint arXiv:2407.07725 (2024).

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://doi.org/10.1145/3592401
https://arxiv.org/abs/2005.11621
https://arxiv.org/abs/2005.11621
https://doi.org/10.1145/566654.566586
https://doi.org/10.1145/566654.566586
https://doi.org//10.2312/SGP/SGP03/200-206
https://doi.org/10.1145/3687895
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/3450626.3459835
https://doi.org/10.1111/CGF.15141
https://doi.org/10.1111/CGF.15141
https://doi.org/10.1145/3592129
https://doi.org/10.1145/2897824.2925901

	Abstract
	1 Introduction
	2 Related Work
	2.1 Volumetric Meshing and Offset Construction
	2.2 Solid/Shell Heuristics in Mesh Repairing
	2.3 Winding Numbers for Inside/Outside Reasoning

	3 Method
	3.1 Energy
	3.2 Implementation

	4 Results
	4.1 Comparison to Explicit Labeling
	4.2 Comparison to Prior Arts
	4.3 Ablations

	5 Limitations & Future Work
	Acknowledgments
	References

